If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-105=0
a = 3; b = 2; c = -105;
Δ = b2-4ac
Δ = 22-4·3·(-105)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{79}}{2*3}=\frac{-2-4\sqrt{79}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{79}}{2*3}=\frac{-2+4\sqrt{79}}{6} $
| (5/9)x=8/12 | | -7.2(x–15.6)=-9 | | 7/7x+1/3x=1+5/3x | | X-4y=17-y | | 2(9x+5)=18x+x | | -2=2x-7 | | -7.2(x–15.6)=9 | | 9x/3=3+x | | 5x+21+2x=180 | | 2(4-3x12=7x-5(2x-7 | | 12x-127=128-5x | | -84+3(4x)=24 | | 350-5x=5x | | -2=2x^2-7 | | 10x-90=-x+75 | | -8-7(x-8)=-5x+40 | | 7(x+5)=3(x-4) | | –7=√ 2x –9. | | 2(7+2x)=(1-x) | | (h+1)=5h−7 | | 36x=3(6+x) | | -6t=-2t+8 | | 9a+5=-4 | | 7−58z=−23 | | 1.7h=-12 | | 7u/5=-28 | | 2(8y)=1.65 | | 2^3x-4=8^x-1 | | -4/7k=-84 | | 7x-35=3x-12 | | (m-17)/5=18 | | 2(5x)=1.65 |